
MATH20132 Calculus of Several Variables. 2019-20

Solutions to Problems 6: Graphs, level sets, parametric sets,
Implicit & Inverse functions

Surfaces as a level set.

1. Are the following level sets surfaces? (Look at the Jacobian matrices of
the level sets).

i. {x ∈ R3 : x2 + 3y2 + 2z2 = 9},

ii. The set of x ∈ R3 satisfying

x2 + y2 − z2 = 1,

x2 + 3y2 + 2z2 = 9.

iii. The set of x ∈ R3 satisfying

x2 + y2 − z2 = 11,

x2 + 3y2 + 2z2 = 9.

iv. The set of x ∈ R4 satisfying

3x+ 2y2 + u2 + v2 = 13,

x3 − y3 + u3 − v3 = 0,

3x3 + 5y + 5u2 − v2 = 24.

Hint the point p = (1, 1, 2, 2)T may be of interest.

Solution i. With f(x) = x2 + 3y2 + 2z2 − 9 the Jacobian matrix is Jf(x) =
(2x, 6y, 4z). Is this full-rank for x : f(x) = 0?

To talk of one vector being linear independent is that you cannot find a
non-zero coefficient which you multiply your vector to get the zero vector.
You can only do this if you start with the zero vector.

Is our Jacobian matrix ever 0? Yes, when x = 0. But f(0) = −9 6= 0
so 0 is not in the level set. Thus for all points in the level set the Jacobian
matrix is non-zero and so the level set is a surface.
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ii. With

f(x) =

(
x2 + y2 − z2 − 1

x2 + 3y2 + 2z2 − 9

)
,

the Jacobian matrix is

Jf(x) =

(
2x 2y −2z

2x 6y 4z

)
.

Is this full-rank, i.e. the two rows linearly independent, for x : f(x) = 0?
Remember, two vectors are linearly dependent iff one is a scalar multiple of
the other. Thus Jf(x) will not be of full rank for x if there exists λ ∈ R
such that (

2x 6y 4z
)

= λ
(

2x 2y −2z
)
.

That is, x = λx, 3y = λy and 2z = −λz.

From x = λx either x = 0 or λ = 1.

• If λ = 1 then the last two equations become y = 3y and z = −2z, i.e.
y = z = 0. So the two rows are linearly dependent if y = z = 0. Yet,
for x : y = z = 0 we have f(x) = (x2 − 1, x2 − 9)

T 6= 0 for all x ∈ R.

• If x = 0 then look at 3y = λy. For this, either λ = 3 or y = 0.

∗ If x = 0 and λ = 3 then, from 2z = −λz = −3z we get z = 0.
So the two rows are linearly dependent if x = z = 0. Yet, for
x : x = z = 0 we have f(x) = (y2 − 1, 3y2 − 9)

T 6= 0 for all y ∈ R.

∗ If x = 0 and y = 0 we can see the two rows are linearly depen-
dent (with λ = −2). Yet, for x : x = y = 0 we have f(x) =

(−z2 − 1, 2z2 − 9)
T 6= 0 for all z ∈ R.

We have found many points at which Jf(x) is not of full-rank but none
satisfy f(x) = 0. Hence the level set is a surface.
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The set of points x2 + y2 − z2 = 1 is an Hyperboloid:

The set of points x2 + 3y2 + 2z2 = 9 is an ellipsoid:
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Their intersection is a disjoint union of two closed lines in R3, here shown
in blue.

iii. Be Careful! You can go through the argument of part ii but in this case
the level set is empty! Subtract equation 1 from 2 to find that any points
on the level set must satisfy 2y2 + 2z2 = −2, impossible.

iv. With

f(x) =

 3x+ 2y2 + u2 + v2 − 13

x3 − y3 + u3 − v3

3x3 + 5y + 5u2 − v2 − 24


the Jacobian matrix is

Jf(x) =

 3 4y2 2u 2v

3x2 −3y2 3u2 −3v2

9x2 5 10u −2v

 .

The point p = (1, 1, 2, 2)T is of interest because f(p) = 0, so p is in the level
set. But also

Jf(p) =

 3 4 4 4

3 −3 12 −12

9 5 20 −4

 .

This is not of full rank because 2r1 + r2 = r3. Hence the level set is not a
surface at p.
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Surfaces as an image set.

2. Are the following parametrically defined sets surfaces? Give your reasons.
(Look at their Jacobian matrices.)

i.
{

(x2 + y2, xy, 2x− 3y)
T

: x, y ∈ R
}
,

ii.
{

(x2 + y2, xy, 2x3 − 3y2)
T

: (x, y) ∈ R2\ {0}
}
,

iii.
{

(x2 + y2, xy, 2x3 − 3y2)
T

: x > 0, y > 0
}
,

iv.
{

(yex, xey, 1)T : x, y ∈ R
}
.

Solution For the image set to be a surface the Jacobian JF(x) has to be of
full-rank at all points.

i. Here the set given is the image set of the function F : R2 → R3,

F(x) =

 x2 + y2

xy
2x− 3y

 ,

which has the Jacobian matrix

JF(x) =

 2x 2y

y x

2 −3

 .

A quick observation shows that when x = 0 the columns (0, 0, 2)T and
(0, 0,−3)T are not linearly independent. Hence ImF = {F(x) : x ∈ R2} is
not a surface.

ii. The Jacobian matrix is

JF(x) =

 2x 2y

y x

6x2 −6y

 .

The columns are obviously linearly dependent if x = 0 but that point has
been omitted. We look, instead, for x 6= 0 for which there exists λ ∈ R such
that  2x

y

6x2

 = λ

 2y

x

−6y

 .
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That is, x = λy, y = λx and x2 = −λy. The first two combine as x = λ2x in
which case either x = 0 or λ2 = 1.

• If x = 0 then y = λx = 0 but (0, 0)T has been omitted.

• This leaves λ2 = 1, i.e. either λ = 1 or λ = −1.

∗ If λ = 1 then x = y and x2 = −y = −x. Since x 6= 0 we have
x = −1 and thus y = −1. That is, at (−1, 1)T the Jacobian is not
of full rank. Hence the given set is not a surface.

∗ If λ = −1 then x = −y and x2 = y = −x. This implies x = −1
and y = 1. So (−1, 1)T is another (and the last) point at which
the Jacobian matrix is not of full rank.

iii. We have the same Jacobian matrix as in part ii. We saw there that
if, and only if, (x, y)T = 0, (−1, 1)T or (−1,−1)T then JF(x) is not of
full-rank. These three points do not lie in the region x > 0, y > 0 and so
{F(x) : x > 0, y > 0} is a surface.

iv. In this example we have

JF(x) =

 yex ex

ey xey

0 0

 .

Does there exist x = (x, y)T and λ such that yex = λex and ey = λxey?
Since ex, ey 6= 0 divide to get y = λ and 1 = λx. Substitute in to get that
the parametric set fails to be a surface at all points on the two hyperbola
given by xy = 1.

Graphs in R3.

3. Suppose that f : U ⊆ R2 → R is Fréchet differentiable on U . Let

Gf =

{(
a

f(a)

)
: a ∈ U

}
⊆ R3.

be the graph of f .

Prove that as a ∈ U varies in the v ∈ R2 direction the directional deriva-
tive dvf(a) represents the rate of change in the z-coordinate of the corre-
sponding points on the graph.
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Hint look at the rate of change of going from(
a

f(a)

)
to

(
a + tv

f(a + tv)

)
Solution Following the hint, the rate of change from(

a

f(a)

)
to

(
a + tv

f(a + tv)

)
is, if it exists,

lim
t→0+

1

t

(
a + tv − a

f(a + tv)− f(a)

)
=

(
v

limt→0+ (f(a + tv)− f(a))/t

)

=

(
v

dvf(a)

)
.

4. Let f(x) = 4− 3x2 + xy − y2,x ∈ R2. If a spider stands on the graph of
f above q = (1, 1)T in which direction should the spider move for

i. the fastest ascent?

ii. the fastest descent?

iii. to stay at the same height?

Remember, though the graph lies within R3 the direction will be in R2; we
see this in real life when, on a mountain, you only give directions using West
& North coordinates, no mention is given of up or down.

Hint Look back at Question 9 on Sheet 5 that looked at bounds on dvf(a)
and when they are attained.

Solution The gradient vector is

∇f(x) =

(
−6x+ y
x− 2y

)
so ∇f(q) =

(
−5
−1

)
.

i. The quickest ascent will be maxv dvf(q). From the Question 9 on Sheet
5 this is in the direction of the gradient vector, i.e. (−5,−1)T/

√
26 (the

‘direction’ should be a unit vector).

ii. The quickest descent will be minv dvf(q). Again from Question 9, Sheet
5, this is in the opposite direction of the gradient vector, i.e. (5, 1)T/

√
26.

iii. To stay at the same height we require no change in the z-coordinate, i.e.
dvf(q) = 0. So we need to solve ∇f(q)•v = 0, i.e. (−5,−1)T •v = 0. Hence
v = ± (1,−5)T/

√
26.
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The graph z = f(x) for Question 4::

q

(0,0,4)

p
x y

z

As we look at the surface the point q lies in the x - y plane underneath
the surface. What is perhaps interesting here is that the path of greatest
ascent and descent (here in red) does not go towards the highest point of the
surface (at (0, 0, 4)T ).

5. Define the function

f(x) = (x− 1)2 + y2 for x = (x, y)T ∈ R2.

Imagine standing on the graph of f above the point q = (0, 2)T and spilling
water. In which direction would the water flow?

Solution Recall that dvf(q) = ∇f(q) • v and so dvf(q) is greatest when
v = ∇f(q)/ |∇f(q)|, least when v = −∇f(q)/ |∇f(q)|, and zero when v is
orthogonal to ∇f(q).

In the present example,

∇f(q) =

(
2 (x− 1)

2y

)
x=q

=

(
−2
4

)
.

So the greatest ascent is in the direction (−1, 2)T/
√

5, greatest descent in
(1,−2)T/

√
5 and no height change in ± (2, 1)T/

√
5. This is not a physics

course but it is not unreasonable to assume that water will follow the path
of steepest descent, i.e. go in the direction (1,−2)T/

√
5.
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The graph of f(x) = (x− 1)2 + y2 for Question 5:

q

(1,0,0)

px

y

z

Note that (x− 1)2 +y2 ≥ 0 with equality when (x, y) = (1, 0). So the lowest
point of the paraboloid is, in R3, at (1, 0, 0)T .

The direction from q = (0, 2)T to the lowest point (1, 0)T is (1,−2) /
√

5,
and I would suggest it is no surprise that this was the direction of steepest
descent, the direction the water would take.

Graphs as an image set and a level set

6. Define φ : R2 → R2, (x, y)T → (xy2, x2 + y)
T

.

i. The graph Gφ is the image of some function F : R2 → R4. Find F and
the Jacobian matrix JF(x).

ii. The graph Gφ can be expressed as a level set of a system of equations.
Find such a system of equations and find the Jacobian matrix of the
system.

Hint Since F(x) ∈ R4 write F(x) = (s, t, u, v)T and find relations
between the s, t, u and v.

Solution i. F : R2 → R4 is given by

F(x) =

(
x

φ (x)

)
, (1)
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for x ∈ R2. Equivalently,

F

((
x

y

))
=


x

y

xy2

x2 + y

 .

From this second form we see that

JF(x) =


1 0

0 1

y2 2xy

2x 1

 =

(
I2

Jφ(x)

)
,

where I2 is the 2×2 identity matrix. Hopefully you could have derived this
last form for JF(x) directly from (1).

ii. Following the hint write

F

((
x

y

))
=


x

y

xy2

x2 + y

 =


s

t

u

v

 .

We find that u = xy2 = st2 and v = x2 + y = s2 + t. Thus the level set is

u− st2 = 0

v − s2 − t = 0.

The Jacobian Matrix is (
−t2 −2st 1 0

−2s −1 0 1

)
. (2)

Note you may have written the system as

st2 − u = 0

s2 + t− v = 0,

with Jacobian matrix (
t2 2st −1 0

2s 1 0 −1

)
. (3)

In general any graph can be written as a level set. We do so such that
the Jacobian matrix contains the identity matrix, as in (2), not the negative
identity seen in (3)
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Linear Algebra

Vector subspaces in Rn.

7. In the notes it is stated that

i. if M ∈Mn,r (R) then {Mt : t ∈ Rr} is a vector subspace of Rn;

ii. if N ∈Mm,n (R) then {x ∈ Rn : Nx = 0} is a vector subspace of Rn;

iii. if S ⊆ Rn then the orthogonal complement

S⊥ = {x ∈ Rn : x • s = 0 for all s ∈ S}

is a vector subspace of Rn.

Prove all these assertions.

Solution Throughout let α, β ∈ R.

i. If u,v ∈ {Mt : t ∈ Rr} there exist s, t ∈ Rr : u = Ms,v = Mt. Then

αu + βv = αMs + βMt = M(αs + βt) ∈ {My : y ∈ Rr}

since αs + βt ∈ Rr.

ii. If u,v ∈ {x ∈ Rn : Nx = 0} then

N(αu + βv) = αNs + βNt = 0.

Hence αu + βv ∈ {x ∈ Rn : Nx = 0}.
iii. If u,v ∈ S⊥ then u • s = 0 and v • s = 0 for all s ∈ S. Thus

(αu + βv) • s = αu • s + βv • s = 0

for all s ∈ S. Hence αu + βv ∈ S⊥.

Note that ii. is a special case of iii; given N let S be the set of rows of N .

Planes in Rn.

8. i. A plane in R3 is given parametrically by
 2x+ 4y − 5

2x+ y − 2
2x− 3y

 :

(
x

y

)
∈ R2

 .

Express this plane as
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a. a graph {(
u

φ(u)

)
: u ∈ R2

}
,

of some function φ : R2 → R,

b. a level set,
f−1(0) =

{
s ∈ R3 : f(s) = 0

}
.

for some f : R3 → R.

ii. Repeat for the parametric set
 2x+ 2y − 2

x+ y − 1
2x− 3y

 :

(
x

y

)
∈ R2

 .

iii. Repeat for 


4x− 4y + 8
−2x+ y − 1
3x− 4y + 6

4y − 4

 :

(
x

y

)
∈ R2

 ,

this time expressing this as a graph of some function φ : R2 → R2, and then
as a level set.

Solution i a. In the hope that
 2x+ 4y − 5

2x+ y − 2
2x− 3y

 :

(
x

y

)
∈ R2

 =

{(
u

φ(u)

)
: u =

(
u

v

)
∈ R2

}
,

write u = 2x+ 4y − 5 and v = 2x+ y − 2 and solve:

y =
1

3
(u− v + 3) and x =

1

6
(4v − u+ 3) .

Then

φ(u) = 2x− 3y =
1

3
(7v − 4u− 6) .

Thus the given plane is the graph of φ(u) = (7v − 4u− 6) /3.

b. By the result in part a, as a level set the points s = (s, t, u)T ∈ R3 on the
graph satisfy

u = φ
(

(s, t)T
)

, i.e. 4s− 7t+ 3u = −6. (4)
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So f(s) = 4s− 7t+ 3u+ 6.

Alternative Approach. Write 2x+ 4y − 5

2x+ y − 2

2x− 3y

 =

 −5
−2
0

+ x

 2
2
2

+ y

 4
1
−3

 .

Then v1 = (2, 2, 2)T and v2 = (4, 1,−3)T span the plane. Thus v1 ∧ v2 =
(4,−7, 3)T is normal to the plane, and for this reason relabeled as n. A
definition of the plane is that s = (s, t, u)T is in the plane iff n · (s− p) = 0
where p = (−5,−2, 0)T . This again leads to (4).

ii. a. There is no hope that
 2x+ 2y − 2

x+ y − 1
2x− 3y

 :

(
x

y

)
∈ R2

 =


 u

v

φ(u)

 : u =

(
u

v

)
∈ R2

 ,

for this would imply

u = 2x+ 2y − 2 = 2 (x+ y − 1) = 2v,

whereas u and v should be independent variables. Instead we could choose,
for example, u = x+ y − 1 and v = 2x− 3y to get

 2x+ 2y − 2
x+ y − 1
2x− 3y

 :

(
x

y

)
∈ R2

 =


 2u

u
v

 :

(
u

v

)
∈ R2

 .

This is a vertical plane in R3, and it is a graph but where the first coordinate
is a function of the second and third coordinates.

b. As a level set this is the set of points s = (s, t, u)T ∈ R3 such that
s− 2t = 0; equivalently it is the set f−1(0) for f(s) = s− 2t.

iii. We hope to write the given surface as a graph

{(
u

φ (u)

)
: s ∈ R2

}
=




u

v

φ1(u)

φ2(u)

 : u =

(
u

v

)
∈ R2

 ,
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where φ : R2 → R2. Hoping that
4x− 4y + 8

−2x+ y − 1

3x− 4y + 6

4y − 4

 =

u

v

φ1(u)

φ2(u)

, (5)

first solve

4x− 4y + 8 = u

−2x+ y − 1 = v.

The solution is

x =
−u− 4v + 4

4
and y =

−u− 2v + 6

2
.

Then, from (5),

φ1(s) = 3x− 4y + 6 = 3

(
−u− 4v + 4

4

)
− 4

(
−u− 2v + 6

2

)
+ 6

=
5u+ 4v − 12

4

and similarly
φ2(s) = 4y − 4 = −2u− 4v + 8.

Thus the given plane is the graph of φ : R2 → R2,

φ(u) =

(
(5u+ 4v − 12) /4

−2u− 4v + 8

)
.

The level set is those (s, t, u, v)T ∈ R4 satisfying

5s+ 4t− 4u = 12,

2s+ 4t+ v = 8.

Equivalently, it is the set f−1 (0) where f : R4 → R2,

f(s) =

(
5s+ 4t− 4u− 12

2s+ 4t+ v − 8

)
,

where s = (s, t, u, v)T .
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Level sets are locally graphs

9 i. State the Implicit Function Theorem.

ii. a. Prove, using the Implicit Function Theorem, that for the solutions
(x, y, u, v)T ∈ R4 of

x2 + y2 + 2uv = 4

x3 + y3 + u3 − v3 = 0,

there exists an open subset of R4 containing the solution p =
(−1, 1, 1, 1) in which the u and v can be given as functions of x
and y, with (x, y)T in some open subset of R2 containing the point
q = (−1, 1)T .

b. Find the partial derivatives of u and v with respect to x and y at
q.

c. Is there any open subset of R4 containing p in which y and u can
be given as functions of x and v? What happens if you attempt
to find the partial derivatives of y and u as functions of x and v
at this point?

iii. Do the same calculation of partial derivatives for the point (−1, 1,−1,−1)T .

Solution i. Form the notes we have the Implicit Function Theorem: Suppose
that f : U → Rm is a C1-function on an open set U ⊆ Rn where 1 ≤ m < n,
and there exists p ∈ U such that f(p) = 0, Jf(p) has full-rank m, and the
final m columns of Jf(p) are linearly independent. Write

p =

(
q
r

)
,

where q ∈ Rn−m and r ∈ Rm. Then there exists

• an open set V : q ∈ V ⊆ Rn−m,

• a C1-function φ : V → Rm and

• an open set W : p ∈ W ⊆ U
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such that for
(
vT ,yT

)T ∈ W,
f

((
v
y

))
= 0 if, and only if v ∈ V andy = φ(v) .

ii. a. Define f : R4 → R2 by

f(x) =

(
x2 + y2 + 2uv − 4

x3 + y3 + u3 − v3

)
.

with x = (x, y, u, v)T . Then

Jf(p) =

(
2x 2y 2v 2u

3x2 3y2 3u2 −3v2

)
x=p

=

(
−2 2 2 2

3 3 3 −3

)
, (6)

when p = (−1, 1, 1, 1)T . The last two columns of this matrix (2, 3)T and
(2,−3)T are linearly independent and so we need no rearrangement of columns
to apply the Implicit Function Theorem. In the notation of the Theorem,
q = (−1, 1)T . Thus there exists

• an open set V : q ∈ V ⊆ R2,

• a C1-function φ : V → R2 and

• an open set W : p ∈ W ⊆ R4

such for x ∈ W, f(x) = 0 if, and only if

x =


x
y
u
v

 with

(
x
y

)
∈ V and

(
u
v

)
= φ

((
x
y

))
.

Our required functions are u = φ1 and v = φ2, the component functions
of vector-valued function φ.

b. Restrict to (x, y)T ∈ V . Differentiating the equations given in the question
with respect to x gives

2x+ 2
∂u

∂x
v + 2

∂v

∂x
u = 0

3x2 + 3u2
∂u

∂x
− 3v2

∂v

∂x
= 0,
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At the point (x, y)T = q = (−1, 1)T (when u = v = 1) this gives the
system

−2 + 2
∂u

∂x
(q) + 2

∂v

∂x
(q) = 0

3 + 3
∂u

∂x
(q)− 3

∂v

∂x
(q) = 0,

remembering that u and v, and thus their derivatives, depend only on x and
y. Solve this to give

∂u

∂x
(q) = 0 and

∂v

∂x
(q) = 1.

Similarly
∂u

∂y
(q) = −1 and

∂v

∂y
(q) = 0.

Lesson: The Implicit Function Theorem says that u = u(x, y) and v = v(x, y)
exist though it doesn’t say what these functions are. Nonetheless we can find
the partial derivatives of these functions.

c. In the Jacobian matrix in (6) the second and third column, corresponding
to y and u are not linearly independent. The Implicit Function Theorem
does not allow us to conclude that y and u can be given locally as functions
of x and v. (Note it does not imply that y and u can not be given locally
as functions of x and v, we just cannot use the Implicit Function Theorem
to prove it.)

Aside If you assume that y and u can be given locally as functions of x and
v, you can attempt to follow the above. Restrict (x, v)T to some open subset
of R2 containing q′ = (−1, 1) (Note that q′ looks identical to q above, but q
contains the first and second coordinates of p, while q′ the first and fourth.)
Differentiating the equations given in the question with respect to x

2x+ 2y
∂y

∂x
+ 2v

∂u

∂x
= 0

3x2 + 3y2
∂y

∂x
+ 3u2

∂u

∂x
= 0.

At q′ = (−1, 1) (when x = −1, v = 1) this becomes

−2 + 2
∂y

∂x
(q′) + 2

∂u

∂x
(q′) = 0

3 + 3
∂y

∂x
(q′) + 3

∂u

∂x
(q′) = 0.
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This system is quickly seen to be inconsistent; no solutions exist for ∂y/∂x
and ∂u/∂x.

End of aside

iii. Labelling p2 = (−1, 1,−1,−1)T , we have

Jf(p2) =

(
−2 2 −2 −2

3 3 3 −3

)
.

The last two columns are still linearly independent so we can express u and
v as functions of x and y in an open set containing p2. The same method as
above gives

∂u

∂x
(q2) = −1 and

∂v

∂x
(q2) = 0,

and
∂u

∂y
(q2) = 0 and

∂v

∂y
(q2) = 1,

where q2 = (−1, 1)T .

Note that the answers are different to those found in Part ii.b. because the
functions u = u(x, y) and v = v(x, y) near p are different to those near p2.
We could have labeled the solutions in Part ii.b. as u1, v1 and those from
part iii. as u2, v2. Then for (x, y)T close to (−1, 1)T the points (x, y, u1, v1)

T

lie close to p while (x, y, u2, v2)
T lie close to p2.

10. Show that the following level sets are locally graphs around the point
given.

i. (x, y, z)T ∈ R3 : xy2z3 − x2y2z2 + x3y2 = 18 with p = (2, 3,−1)T .

ii. (x, y, z)T ∈ R3 :

x2 + 3y2 + 2z2 = 9,

xyz = −2,

with p = (2,−1, 1)T .
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Solution To show that the level set x : f(x) = 0 for some C1-function
f : U ⊆ Rn → Rm is locally a graph we apply the Implicit Function Theorem.
This says that if the final m columns of the Jacobian matrix Jf(p) are linearly
independent then the level set is the graph of some function φ : V ⊆ Rn−m →
Rm.

i. With f(x) = xy2z3 − x2y2z2 + x3y2 − 1 we have

Jf(p) = f (2, 3, −1)

=
(
y2z3 − 2xy2z2 + 3x2y2, 2xyz3 − 2x2yz2 + 2x3y, 3xy2z2 − 2x2y2z

)
x=p

= (63, 12, 126) .

The last column is non-zero (the equivalence of linearly independent when
only one term). So by the Implicit Function Theorem the last variable, z,
can be given as a function of the first two, x and y, in a neighbourhood of
(2, 3)T .

Note you can also solve for y as a function of x and z in a neighbourhood
of (2,−1)T or for x in terms of y and z in a neighbourhood of (3,−1)T .

ii. The Jacobian of the level set at p is

Jf(p) =

(
2x 6y 4z
yz xz xy

)
x=p

=

(
4 −6 4
−1 2 −2

)
.

The last two columns are linearly independent so the system can be solved
with y and z functions of x in a neighbourhood of 2.

11.i. Does the equation x = sin(xyz) determine x as a function of y and z
in any open subset of R3 containing the point p = (1, 1, π/2)T , i.e. as
a graph x = φ (y, z)?

ii. Does the equation x = sin(xyz) determine z as a function of x and y
in a open subset of R3 containing the point p = (1, 1, π/2)T , i.e. as a
graph z = φ (x, y)?

Solution In both parts of this question we are concerned with the level set
f−1 (0) with f(x) = sin (xyz)− x where x = (x, y, z)T . The Jacobian matrix
for f is

Jf(x) = (yz cos (xyz)− 1, xz cos (xyz) , xy cos (xyz)) .

ThenJf(p) = (−1, 0, 0), full-rank since it is non-zero.

19



i. The first column in Jf(p) (corresponding to the x variable) is linearly
independent (i.e. non-zero). To apply the Implicit Function Theorem as
stated in Question 3 we should rearrange the variables so the last column is
linearly independent.

Or we just note that, in the notation of the Implicit Function Theorem
seen in Question 7, the vector r in the statement of the Implicit Function
Theorem consists of the coordinates of p corresponding to the independent
columns. Here there is only one such column so r is a scalar, in fact r = 1.
The vector q contains all other coordinates of p, so q = (1, π/2)T .

The conclusion is that there exists an open set V : q ∈ V ⊆ R2, a C1-
function φ : V → R and an open set W : p ∈ W such for (x, y, z)T ∈ W,

sin (xyz)− x = 0 if, and only if (y, z)T ∈ V andx = φ
(

(y, z)T
)

.

Hence x can be given as a function of y and z in some open subset of R3

containing the point p = (1, 1, π/2)T .

ii. Since the last column in Jf(p) = (−1, 0, 0) is linearly dependent (be-
cause it is zero), the Implicit Function Theorem tells us nothing; z may be a
function of x and y or it may not.

We have to approach the problem differently. For example, we can at-
tempt to solve sin (xyz)−x = 0 giving z =

(
sin−1 x

)
/xy. Yet in any open set

containing (1, 1, π/2)T there will be points (x, y, z)T with x > 1. But sin−1 x
is not defined for such x hence z cannot be given as a function of x and y in
any open set containing (1, 1, π/2)T .
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Solutions to Additional Questions 6

12. Prove part of a Theorem from the Notes: P ⊆ Rn is a plane of dimension
r iff

i. there exists a point p ∈ Rn and a full rank matrix M ∈ Mn,r (R) such
that P = {p +Mt : t ∈ Rr},

ii. there exists a point p ∈ Rn and a full rank matrix N ∈ Mn−r,n (R) such
that P = {x ∈ Rn : N (x− p) = 0}.

Hint for part ii. If V ⊆ Rn is a vector space then dimV⊥ = n− dimV . (For
a proof see appendix of Section 3 Part 1.)

The important part of these results is the relationship between the di-
mension of the plane and the fact that the matrices are of full rank

Solution i. By Question 7 {Mt : t ∈ Rr} is a vector space and as stated in
the notes

{Mt : t ∈ Rr} = span {c1, ..., cr} (7)

where the ci are the columns of M . Then

M is of full rank iff dim span {c1, ..., cr} = r

iff dim {Mt : t ∈ Rr} = r by (7)

iff {p +Mt : t ∈ Rr} is a plane of dimension r.

ii. By Question 7 {x ∈ Rn : Nx = 0}, is a vector space and as stated in the
notes

{x ∈ Rn : Nx = 0} = span {r1, ..., rn−r}⊥ (8)

where the ri are the rows of N . Then

N is of full rank iff dim span {r1, ..., rn−r} = n− r

iff dim span {r1, ..., rn−r}⊥ = n− (n− r) by hint

iff dim {x ∈ Rn : Nx = 0} = r by (8)

iff {x ∈ Rn : N (x− p) = 0} = p + {y ∈ Rn : Ny = 0}

is a plane of dimension r.

13 Let φ(u) = 2u2 + 3uv − 4v2 for u = (u, v)T ∈ R2. Then p = (1, 2,−8)T

is a point on the graph of φ. In which direction v ∈ R2 is the fastest ascent?
the fastest descent? no change in height?
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Solution q = (1, 2)T and ∇φ(q) = (4u+ 3v, 3u− 8v)Tu=q = (10,−13)T .

So the direction of greatest ascent is (10,−13)T/
√

269, of greatest descent

(−10, 13)T/
√

269.

There will be no change in height when dvφ (q) = 0, i.e. φ(q) • v = 0.
This is v = ± (13, 10)T/

√
269.

14. Define the function

f(x) =
x2y + 2xy2

1 + x2 + y2
for x = (x, y)T ∈ R2.

Imagine standing on the graph of f above the point q = (1, 2)T and spilling
water. In which direction would the water flow?

Solution Note first that f(q) = 5/3. Next, multiply up(
1 + x2 + y2

)
f(x) = x2y + 2xy2

Taking the partial derivatives w.r.t x,

2xf(x) +
(
1 + x2 + y2

) ∂f
∂x

(x) = 2xy + 2y2,

so
10

3
+ 6

∂f

∂x
(q) = 4 + 8, i.e

∂f

∂x
(q) =

13

9
.

Similarly, taking the partial derivatives w.r.t y,

2yf(x) +
(
1 + x2 + y2

) ∂f
∂y

(x) = x2 + 4xy

so
20

3
+ 6

∂f

∂y
(q) = 9 i.e

∂f

∂y
(q) =

7

18
.

Thus

∇f(q) =
1

18

(
26
7

)
.

Then presumably the water will run down the path of fastest descent,
which is in the direction of

− ∇f(q)

|∇f(q)|
= − 1√

725

(
26
7

)
.
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The graph z = f(x) for Question 14:

q

p

x

y

z

As we look at the surface the point q lies in the x - y plane underneath
the surface.

15. Let T : R3 → R, x 7→ 10 − 2e2x
2+3y2+z2 give the temperature at each

point in R3.

i. In which direction from p = (2, 0, 2)T does the temperature increases as
quickly as possible? Decreases as quickly as possible?

ii. Let S ⊆ R3 be a surface in R3 given parametrically as
 u2 + v

u− v
uv + u

 : 0 ≤ u, v ≤ 2

 .

The point p = (2, 0, 2)T ∈ S is the image of q = (1, 1)T . If a spider
stands at p, and is restricted to stay on the surface, in which direction must
they move to increase the temperature as quickly as possible; to decrease it
as quickly as possible?

Solution i. The gradient vector of T at p is

∇T (x) = −e2x2+3y2+z2

 8x
12y
4z

 so ∇T (p) = −e−12
 10

0
8

 .
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Look back at Question 9 on Sheet 5 to see that greatest increase in tem-
perature is in direction

∇T (p)

|∇T (p)|
= − 1√

41

 5
0
4

 .

The greatest decrease is in the opposite direction (multiply by −1).

ii . Let

F(u) =

 u2 + v
u− v
uv + u

 ,

for u = (u, v)T : 0 ≤ u, v ≤ 2. Then the temperature restricted to the surface
is T (F(u)) = T ◦F(u) . So the greatest increase in the temperature at q is in
the direction of ∇ (T ◦ F) (q) (and the greatest decrease in −∇ (T ◦ F) (q)).

Recall ∇ (T ◦ F) (q) = J (T ◦ F) (q)T while the Chain Rule gives

J (T ◦ F) (q) = JT (F(q)) JF(q) .

These combine as

∇ (T ◦ F) (q) = JF(q)T ∇T (F(q)) = JF(q)T ∇T (p) .

Yet

JF(q) =

 2u 1
1 −1

v + 1 u


u=q

=

 2 1
1 −1
2 1

 .

Thus

∇ (T ◦ F) (q) = −e−12
(

1 −1 1
2 1 2

) 10
0
8

 = −e−12
(

18
36

)
.

We only need the direction, so moving from q in the direction of− (1, 2)T/
√

5
the temperature on the surface will increase at the greatest rate, in the di-
rection (1, 2)T/

√
5 it decreases at the greatest rate.

To compare this result with that in Part i. we need to know what, as
we move from q in direction v, is the direction from p in R3? As we move
from q in direction v we move on the surface along the curve F (q + tv).
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The direction of travel at t = 0 is the derivative which, by the Chain Rule,
is JF (q)v. Thus the fastest increase is in the direction 2 1

1 −1
2 1

( 1
2

)
, i.e.

1√
42

 5
−1
4

 .

Again, the fastest decrease is in the opposite direction.

16. i. Prove that

xey + uz − cos (vπ/2) = 2

u cos (yπ/2) + x2v − yz2 = 1,

can be solved for u, v in terms of x, y, z near p = (2, 0, 1, 1, 0)T . (The general
point of R5 is (x, y, z, u, v)T ).

ii. Can you find a point p′ around which the system can be solved for x and
z in terms of y, u and v?

Solution If we set

f(x) =

(
xey + uz − cos (vπ/2)− 2

u cos (yπ/2) + x2v − yz2 − 1

)

then

Jf(x) =

(
ey xey u z π sin (vπ/2) /2

2xv −uπ sin (yπ/2) /2− z2 −2yz cos (yπ/2) x2

)
.

Thus

Jf(p) =

(
1 2 1 1 0
0 −1 0 1 4

)
.

Since the fourth and fifth columns (corresponding to the variables u and
v) are linearly dependent the Implicit Function Theorem says that in some
set W ⊆ R5 : p ∈ W a point x ∈ W satisfies f(x) = 0 iff (x, y, x)T ∈ V for
some open set V and (u, v)T = φ(x, y, x) for some C1-function φ : V → R2.

ii. First note that the point p will not suffice; the columns corresponding
to x and z, the first and third are not linearly independent (remember, this
does not say that it is not solvable for x and z in terms of y, u and v, but
rather we cannot prove it is).
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So we have to find another solution to our system. We can simplify some
exponentials and trig. functions by keeping y = 0 but this time choose v = 1.
The system then becomes

x+ uz = 2 and u+ x2 = 1.

This has many solutions so we look at the Jacobian matrix with y = 0
and v = 1 : (

1 x u z π/2
2x −z2 0 1 x2

)
.

For the first and third columns to be linearly independent we only require
x 6= 0. A possible solution would then be x = 1/2, u = 3/4 and z = 2. Hence
choose p′ = (2, 0, 2, 3/4, 2)T when

Jf(p′) =

(
1 2 3/4 2 π/2
1 −4 0 1 1/4

)
.

In fact, in this matrix every pair of columns are linearly independent so,
in some neighbourhood of p′, the system can be solved for any two variables
in terms of the other three.

17. Can (x2 + y2 + 2z2)
1/2

= cos z be solved for y in terms of x and z near
(0, 1, 0)T ?

Solution Writing f(x) = (x2 + y2 + 2z2)
1/2 − cos z for x ∈ R3 the Jacobian

matrix is

Jf(x) =
1

(x2 + y2 + 2z2)1/2

(
x, y, 2z +

(
x2 + y2 + 2z2

)1/2
sin z

)
.

At p = (0, 1, 0)T this becomes

Jf(p) = (0, 1, 0) .

Since the second column corresponding to the variable y is non-zero (equiv-
alent to the notation of linearly independent when the column ‘vectors’ have
only one component) the Implicit Function Theorem says that the system
can be solved near p for y as a function of x and z.
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